• United Nations. World Population Prospects 2019 (United Nations, Department of Economic and Social Affairs, Population Division, 2019).

    Book 

    Google Scholar
     

  • Parnell, S. & Walawege, R. Sub-Saharan African urbanisation and global environmental change. Glob. Environ. Change 21, S12–S20 (2011).

    Article 

    Google Scholar
     

  • Jayne, T. S., Anriquez, G. & Collier, E. African Agriculture Toward 2030: Changes in Urbanization and Agricultural Land Dynamics and Their Implications for CGIAR Research (Independent Science and Partnership Council, 2013).


    Google Scholar
     

  • Bremner, J. Population and Food Security: Africa’s Challenge (Population Reference Bureau, Policy Brief, 2012).


    Google Scholar
     

  • Melo, P. et al. Income Elasticities of Food Demand in Africa: A Meta-analysis (Office of the European Union, 2015).


    Google Scholar
     

  • Nhemachena, C. et al. Climate change impacts on water and agriculture sectors in Southern Africa: Threats and opportunities for sustainable development. Water 12(10), 2673 (2020).

    Article 

    Google Scholar
     

  • Alboghdady, M. & El-Hendawy, S. E. Economic impacts of climate change and variability on agricultural production in the Middle East and North Africa region. Int. J. Clim. Change Strateg. Manag. 8(3), 463–472 (2016).

    Article 

    Google Scholar
     

  • Schilling, J., Hertig, E., Tramblay, Y. & Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Change 20(1), 7 (2020).

    Article 

    Google Scholar
     

  • Alliance for a Green Revolution in Africa. Africa Agriculture Status Report: Catalyzing Government Capacity to Drive Agricultural Transformation (Alliance for a Green Revolution in Africa, 2018).


    Google Scholar
     

  • Irz, X., Lin, L., Thirtle, C. & Wiggins, S. Agricultural productivity growth and poverty alleviation. Dev. Policy Rev. 19(4), 449–466 (2001).

    Article 

    Google Scholar
     

  • Timmer, P. Agriculture and pro-poor growth: An Asian perspective. SSRN Electron. J. https://doi.org/10.2139/ssrn.984256 (2005).

    Article 

    Google Scholar
     

  • Technical Centre for Agricultural and Rural Cooperation ACP-EU. The Digitalization of African Agriculture Report 2018–2019 (Technical Centre for Agricultural and Rural Cooperation ACP-EU, 2019).


    Google Scholar
     

  • Krishnan, A., Banga, K. & Mendez-Parra, M. Disruptive Technologies in Agricultural Value Chains: Insights from East Africa (Overseas Development Institute, 2020).


    Google Scholar
     

  • Kozai, T. Towards sustainable plant factories with artificial lighting (PFALs) for achieving SDGs. Int. J. Agric. Biol. Eng. 12(5), 28–37 (2019).


    Google Scholar
     

  • Avgoustaki, D. D. & Xydis, G. How energy innovation in indoor vertical farming can improve food security, sustainability, and food safety? Adv. Food Secur. Sustain. 5, 1–51 (2020).

    Article 

    Google Scholar
     

  • Benke, K. & Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 13(1), 13–26 (2017).


    Google Scholar
     

  • Kozai, T. Designing a cultivation system module (CSM) considering the cost performance: A step toward smart PFALs. In Smart Plant Factory: The Next Generation Indoor Vertical Farms (ed. Kozai, T.) 57–80 (Springer, 2018).


    Google Scholar
     

  • Nimaan, M. & Sezgin, M. Vertical farming in Africa a solution for a sustainable agriculture: Review. In 4th EurasianBioChem Conference (2021).

  • Kalicka-Mikołajczyk, A. The international legal status of Western Sahara. Opol. Stud. Adm.-Prawne 18(4), 35–47 (2021).


    Google Scholar
     

  • De Zeeuw, H., Van Veenhuizen, R. & Dubbeling, M. The role of urban agriculture in building resilient cities in developing countries. J. Agric. Sci. 149(S1), 153–163 (2011).

    Article 

    Google Scholar
     

  • International Labour Office. Report on Employment in Africa (Re-Africa)—Tackling the Youth Employment Challenge (International Labour Office, 2020).


    Google Scholar
     

  • Standard Country or Area Codes for Statistical Use (M49). https://unstats.un.org/unsd/methodology/m49/ (UNSD, Accessed 5 February 2022).

  • Abdillahi, M. N. & Sezgin, M. Vertical farming in Africa a solution for a sustainable agriculture: Review. (In 4th International EurasianBioChem, 2021).

  • Moolna, A. & Thompson, B. S. The Blue Economy Approach for Sustainability in Seychelles and East Africa (Keele University Institute for Sustainable Futures, 2018).


    Google Scholar
     

  • Radhouane, L. Climate change impacts on North African countries and on some Tunisian economic sectors. J. Agric. Environ. Int. Dev. 107(1), 101–113 (2013).


    Google Scholar
     

  • Stein, E. W. The transformative environmental effects large-scale indoor farming may have on air, water, and soil. Air Soil Water Res. 14, 117862212199581 (2021).

    Article 

    Google Scholar
     

  • World Bank. World Development Indicators. https://databank.worldbank.org/source/world-development-indicators (Accessed 1 March 2022).

  • Rahmann, G., Grimm, D., Kuenz, A. & Hessel, E. Combining land-based organic and landless food production: A concept for a circular and sustainable food chain for Africa in 2100. Org. Agric. 10(1), 9–21 (2019).

    Article 

    Google Scholar
     

  • Jayne, T. S., Chamberlin, J. & Benfica, R. Africa’s unfolding economic transformation. J. Dev. Stud. 54(5), 777–787 (2018).

    Article 

    Google Scholar
     

  • Etim, E. & Daramola, O. The informal sector and economic growth of South Africa and Nigeria: A comparative systematic review. J. Open Innov. Technol. Mark. Complex. 6(4), 134 (2020).

    Article 

    Google Scholar
     

  • Liebenberg, F., Pardey, P. & Kahn, M. South African Agricultural Research and Development: A Century of Change (University of Minnesota, 2010).


    Google Scholar
     

  • Lynam, J., Beintema, N., Roseboom, J. & Badiane, O. Agricultural Research in Africa: Investing in Future Harvests (International Food Policy Research Institute, 2016).


    Google Scholar
     

  • Martin, M., Weidner, T. & Gullström, C. Estimating the potential of building integration and regional synergies to improve the environmental performance of urban vertical farming. Front. Sustain. Food Syst. 6, 849304 (2022).

    Article 

    Google Scholar
     

  • Ibragimova, A., Wang, Y. & Ivanov, M. Infrastructure development in Africa’s regions: Investment trends and challenges. E3S Web Conf. 295, 01029 (2021).

    Article 

    Google Scholar
     

  • Branca, G., Tennigkeit, T., Mann, W. & Lipper, L. Identifying Opportunities for Climate-Smart Agriculture Investments in Africa (Food and Agriculture Organization of the United Nations, 2012).


    Google Scholar
     

  • Suri, T. Selection and comparative advantage in technology adoption. Econometrica 79(1), 159–209 (2011).

    Article 

    Google Scholar
     

  • Sheng, J. Vertical Farming Feasibility: The Opportunities and Challenges of Adapting Vertical Agriculture (University of British Columbia, 2018).


    Google Scholar
     

  • World Bank. Tracking SDG 7: The Energy Progress Report (World Bank, 2021).


    Google Scholar
     

  • Economic Commission for Africa, African Union Commission, African Development Bank. Africa Water Vision for 2025: Equitable and Sustainable Use of Water for Socioeconomic Development (Economic Commission for Africa, African Union Commission, African Development Bank, 2003).


    Google Scholar
     

  • Al-Kodmany, K. The vertical farm: A review of developments and implications for the Vertical City. Buildings 8(2), 24 (2018).

    Article 

    Google Scholar
     

  • Fischer, G., Tubiello, F. N., van Velthuizen, H. & Wiberg, D. A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Change 74(7), 1083–1107 (2007).

    Article 

    Google Scholar
     

  • Wallace, J. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 82(1–3), 105–119 (2000).

    Article 

    Google Scholar
     

  • AlShrouf, A. Hydroponics, aeroponic and aquaponic as compared with conventional farming. ASRJETS 27(1), 247–255 (2017).


    Google Scholar
     

  • Jayne, T., Yeboah, F. K. & Henry, C. The Future of Work in African Agriculture: Trends and Drivers of Change (International Labour Office, 2017).


    Google Scholar
     

  • Newfarmer, R. & Twum, A. Employment Creation Potential, Labor Skills Requirements and Skill Gaps for Young People: A Rwanda Case Study (Africa Growth Initiative at Brookings, Report, 2022).

  • Borgwardt, H. & Endress, J. Conception of a Vertical Farm for the Maun Science Park in Botswana (HTWG Konstanz, 2022).


    Google Scholar
     

  • Avgoustaki, D. D. & Xydis, G. Indoor vertical farming in the urban nexus context: Business growth and resource savings. Sustainability 12(5), 1965 (2020).

    Article 

    Google Scholar
     

  • Tesfai, M., Branca, G., Cacchiarelli, L., Perelli, C. & Nagothu, U. S. Transition towards bio-based economy in small-scale agriculture in sub-Saharan Africa through sustainable intensification. In The Bioeconomy Approach (ed. Nagothu, U. S.) 83–106 (Routledge, 2020).

    Chapter 

    Google Scholar
     

  • Attig-Bahar, F., Ritschel, U., Akari, P., Abdeljelil, I. & Amairi, M. Wind energy deployment in Tunisia: Status, drivers, barriers and research gaps—A comprehensive review. Energy Rep. 7, 7374–7389 (2021).

    Article 

    Google Scholar
     

  • Zahraoui, Y., Basir Khan, M. R., AlHamrouni, I., Mekhilef, S. & Ahmed, M. Current status, scenario, and prospective of renewable energy in Algeria: A review. Energies 14(9), 2354 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Al-Chalabi, M. Vertical farming: Skyscraper sustainability? Sustain. Cities Soc. 18, 74–77 (2015).

    Article 

    Google Scholar
     

  • Moghimi, F. & Asiabanpour, B. Economics of vertical farming: Quantitative decision model and a case study for different markets in the USA. Research Square (2021).

  • Specht, K. et al. Urban agriculture of the future: An overview of sustainability aspects of food production in and on buildings. Agric. Hum. Values 31(1), 33–51 (2013).

    Article 

    Google Scholar
     

  • Food and Agriculture Organization (FAO). FAOstat. https://www.fao.org/faostat/en/#data (Accessed 15 March 2022).

  • Borrero, J. D. Expanding the level of technological readiness for a low-cost vertical hydroponic system. Inventions 6(4), 68 (2021).

    Article 
    MathSciNet 

    Google Scholar
     

  • Ward, R., Jans-Singh, M. & Choudhary, R. Quantifying the environmental and energy benefits of food growth in the urban environment. In Smart Plant Factory: The Next Generation Indoor Vertical Farms (ed. Kozai, T.) (Springer, 2018).


    Google Scholar
     

  • Tamagnone, P., Cea, L., Comino, E. & Rosso, M. Rainwater harvesting techniques to face water scarcity in African drylands: Hydrological efficiency assessment. Water 12(9), 2646 (2020).

    Article 

    Google Scholar
     

  • Bartniczak, B. & Raszkowski, A. Sustainable development in African countries: An indicator-based approach and recommendations for the future. Sustainability 11(1), 22 (2019).

    Article 

    Google Scholar
     

  • Erol, I. et al. Assessing the feasibility of blockchain technology in industries: Evidence from Turkey. J. Enterp. Inf. Manag. 34(3), 746–769 (2020).

    Article 

    Google Scholar
     

  • De Muro, P., Mazziotta, M. & Pareto, A. Composite indices of development and poverty: An application to MDGs. Soc. Indic. Res. 104(1), 1–18 (2010).

    Article 

    Google Scholar
     

  • Verma, P. & Raghubanshi, A. S. Urban sustainability indicators: Challenges and opportunities. Ecol. Indic. 93, 282–291 (2018).

    Article 

    Google Scholar
     

  • Tapia, C., Randall, L., Wang, S. & Aguiar Borges, L. Monitoring the contribution of urban agriculture to urban sustainability: An indicator-based framework. Sustain. Cities Soc. 74, 103130 (2021).

    Article 

    Google Scholar
     

  • Report of the United Nations Conference on Sustainable Development (United Nations, 2012).

  • Shpak, N., Muzychenko-Kozlovska, O., Gvozd, M. & Sroka, W. Simulation of the influence of external factors on the level of use of the regional tourism potential: A practical aspect. Adm. Sci. 11(3), 85 (2021).

    Article 

    Google Scholar
     

  • Walesiak, M. Visualization of linear ordering results for metric data with the application of multidimensional scaling. Ekonometria 2, 01 (2016).


    Google Scholar
     

  • Strezov, V., Evans, A. & Evans, T. J. Assessment of the economic, social and environmental dimensions of the indicators for sustainable development. Sustain. Dev. 25(3), 242–253 (2016).

    Article 

    Google Scholar
     

  • Radzka, E., Rymuza, K. & Jankowska, J. The assessment of drinking water quality using zero unitarization method. Arch. Environ. Prot. 41(4), 91–95 (2015).

    Article 

    Google Scholar
     

  • The Organisation for Economic Co-operation and Development (OECD). Handbook on Constructing Composite Indicators. Methodology and User Guide (Joint Research Centre-European Commission, 2008).


    Google Scholar
     

  • Human Development Report 2014 (United Nations Development Programme, 2014).

  • Kiselakova, D., Stec, M., Grzebyk, M. & Sofrankova, B. A multidimensional evaluation of the sustainable development of European Union countries—An empirical study. J. Compet. 12(4), 56–73 (2020).


    Google Scholar
     

  • link

    By admin