Seneviratne, S.-I. et al. Weather and Climate Extreme Events in a Changing Climate (Cambridge University Press, 2021).
Gonzalez-Calabuig, M. et al. The AIDE toolbox: AI for disentangling extreme events. IEEE Geosci. Remote Sens. Mag. 12, 1–8 (2024).
Google Scholar
Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1422 (2023). This study introduces a machine learning model that enhances medium-range global weather forecasts, outperforming traditional methods in accuracy.
Google Scholar
Ferchichi, A., Abbes, A. B., Barra, V. & Farah, I. R. Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: a systematic literature review. Ecol. Inform. 68, 101552 (2022).
Google Scholar
Ragone, F. & Bouchet, F. Rare event algorithm study of extreme warm summers and heatwaves over Europe. Geophys. Res. Lett. 48, e2020GL091197 (2021).
Google Scholar
Yokota, F. & Thompson, K. Value of information analysis in environmental health risk management decisions: past, present, and future. Risk Anal. 24, 635–650 (2004).
Google Scholar
Salcedo-Sanz, S. et al. Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review. Theor. Appl. Climatol. 155, 1–44 (2024).
Google Scholar
Gawlikowski, J. et al. A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 56, 1513–1589 (2023).
Google Scholar
Harrington, L. J., Schleussner, C. F. & Otto, F. E. Quantifying uncertainty in aggregated climate change risk assessments. Nat. Commun. 12, 7140 (2021).
Google Scholar
Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Chang. 7, 23–41 (2016). The paper reviews methodologies linking specific extreme weather events to human-induced climate change, highlighting advancements in attribution science.
Google Scholar
Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N. & Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun. 12, 3944 (2021).
Google Scholar
Chattopadhyay, A., Nabizadeh, E. & Hassanzadeh, P. Analog forecasting of extreme-causing weather patterns using deep learning. J. Adv. Model. Earth Syst. 12, e2019MS001958 (2020).
Google Scholar
Bommer, P. L., Kretschmer, M., Hedstrom, A., Bareeva, D. & Hohne, M. M.-C. Finding the right XAI method—a guide for the evaluation and ranking of explainable AI methods in climate science. Artif. Intell. Earth Syst. 3, e230074 (2024).
Hannart, A., Pearl, J., Otto, F. E. L., Naveau, P. & Ghil, M. Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Am. Meteorol. Soc. 97, 99–110 (2016). The authors develop a causal counterfactual framework to assess the influence of specific factors on weather and climate events, enhancing attribution accuracy.
Google Scholar
Vaghefi, S. A. et al. ChatClimate: grounding conversational AI in climate science. Commun. Earth Environ. 4, 480 (2023).
Google Scholar
Olivetti, L. & Messori, G. Advances and prospects of deep learning for medium-range extreme weather forecasting. Geosci. Model Dev. 17, 2347–2358 (2024).
Google Scholar
Materia, S. et al. Artificial intelligence for climate prediction of extremes: state of the art, challenges, and future perspectives. WIREs Clim. Chang. n/a, e914 (2024).
Google Scholar
Ruff, L. et al. A unifying review of deep and shallow anomaly detection. Proc. IEEE 109, 756–795 (2021).
Google Scholar
Han, Z., Zhao, J., Leung, H., Ma, K. F. & Wang, W. A review of deep learning models for time series prediction. IEEE Sens. J. 21, 7833–7848 (2019).
Google Scholar
Zennaro, F. et al. Exploring machine learning potential for climate change risk assessment. Earth Sci. Rev. 220, 103752 (2021).
Google Scholar
Jones, R. L., Kharb, A. & Tubeuf, S. The untold story of missing data in disaster research: a systematic review of the empirical literature utilising the emergency events database (EM-DAT). Environ. Res. Lett. 18, 103006 (2023).
Google Scholar
Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277 (2017).
Google Scholar
Flach, M. et al. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques. Earth Syst. Dyn. 8, 677–696 (2017).
Google Scholar
Prabhat. et al. ClimateNet: an expert-labelled open dataset and Deep Learning architecture for enabling high-precision analyses of extreme weather. Geosci. Model Dev. Discuss. 2020, 1–28 (2020).
Racah, E. et al. Extremeweather: a large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Advances in Neural Information Processing Systems (NeurIPS) 30 (2017).
Guanche García, Y., Shadaydeh, M., Mahecha, M. & Denzler, J. Extreme anomaly event detection in biosphere using linear regression and a spatiotemporal MRF model. Nat. Hazards 98, 849–867 (2018).
Google Scholar
Klehmet, K. et al. Robustness of hydrometeorological extremes in surrogated seasonal forecasts. Int. J. Climatol. 44, 1725–1738 (2024).
Google Scholar
Johnson, J. E., Laparra, V., Pérez-Suay, A., Mahecha, M. & Camps-Valls, G. Kernel methods and their derivatives: concept and perspectives for the Earth system sciences. PLoS ONE 15, p.e0235885 (2020).
Google Scholar
Johnson, J. E., Laparra, V., Piles, M. & Camps-Valls, G. Gaussianizing the Earth: multidimensional information measures for Earth data analysis. IEEE Geosci. Remote Sens. Mag. 9, 191–208 (2021).
Google Scholar
Allen, S., Koh, J., Segers, J. & Ziegel, J. Tail calibration of probabilistic forecasts. arXiv preprint arXiv:2407.03167 (2024).
Boulaguiem, Y., Zscheischler, J., Vignotto, E., van der Wiel, K. & Engelke, S. Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks. Environ. Data Sci. 1, e5 (2022).
Google Scholar
Vijverberg, S. & Coumou, D. The role of the Pacific Decadal Oscillation and ocean-atmosphere interactions in driving US temperature variability. npj Clim. Atmos. Sci. 5, 18 (2022).
Google Scholar
Kladny, K.-R., Milanta, M., Mraz, O., Hufkens, K. & Stocker, B. D. Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data. Ecol. Inform. 80, 102474 (2024).
Google Scholar
Bentivoglio, R., Isufi, E., Jonkman, S. N. & Taormina, R. Deep learning methods for flood mapping: a review of existing applications and future research directions. Hydrol. Earth Syst. Sci. 26, 4345–4378 (2022).
Google Scholar
Belayneh, A., Adamowski, J., Khalil, B. & Ozga-Zielinski, B. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J. Hydrol. 508, 418–429 (2014).
Google Scholar
Kondylatos, S. et al. Wildfire danger prediction and understanding with deep learning. Geophys. Res. Lett. 49, e2022GL099368 (2022).
Google Scholar
Nearing, G. et al. Global prediction of extreme floods in ungauged watersheds. Nature 627, 559–563 (2024).
Google Scholar
Zhang, G., Wang, M. & Liu, K. Deep neural networks for global wildfire susceptibility modelling. Ecol. Indic. 127, 107735 (2021).
Google Scholar
Vo, T. Q., Kim, S.-H., Nguyen, D. H. & Bae, D.-H. LSTM-CM: a hybrid approach for natural drought prediction based on deep learning and climate models. Stoch. Environ. Res. Risk Assess. 37, 2035–2051 (2023).
Google Scholar
Shi, X. Enabling smart dynamical downscaling of extreme precipitation events with machine learning. Geophys. Res. Lett. 47, e2020GL090309 (2020).
Google Scholar
Miloshevich, G., Cozian, B., Abry, P., Borgnat, P. & Bouchet, F. Probabilistic forecasts of extreme heatwaves using convolutional neural networks in a regime of lack of data. Phys. Rev. Fluids 8, 40501 (2023).
Google Scholar
Callaghan, M. et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Chang. 11, 966–972 (2021).
Google Scholar
Sutanto, S. J. et al. Moving from drought hazard to impact forecasts. Nat. Commun. 10, 4945 (2019).
Google Scholar
Salakpi, E. E. et al. Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model. Nat. Hazards Earth Syst. Sci. 22, 2703–2723 (2022).
Google Scholar
Martinuzzi, F. et al. Learning extreme vegetation response to climate drivers with recurrent neural networks. Nonlinear Process. Geophys. 31, 535–557 (2024).
Google Scholar
Ahmad, R., Yang, B., Ettlin, G., Berger, A. & Rodríguez-Bocca, P. A machine-learning based ConvLSTM architecture for NDVI forecasting. Int. Trans. Oper. Res. 30, 2025–2048 (2023).
Google Scholar
Benson, V. et al. Forecasting Localized Weather Impacts on Vegetation as Seen from Space with Meteo-Guided Video Prediction. (2024).
Ronco, M. et al. Exploring interactions between socioeconomic context and natural hazards on human population displacement. Nat. Commun. 14, 8004 (2023). This study uses XAI to explain how socioeconomic factors and natural hazards influence human displacement, revealing that vulnerable communities are disproportionately affected.
Google Scholar
Sodoge, J., Kuhlicke, C. & de Brito, M. M. Automatized spatio-temporal detection of drought impacts from newspaper articles using natural language processing and machine learning. Weather Clim. Extrem. 41, 100574 (2023).
Google Scholar
Bostrom, A. et al. Trust and trustworthy artificial intelligence: a research agenda for ai in the environmental sciences. Risk Anal. 44, 1498–1513 (2024).
Google Scholar
Ghaffarian, S., Taghikhah, F. R. & Maier, H. R. Explainable artificial intelligence in disaster risk management: achievements and prospective futures. Int. J. Disaster Risk Reduct. 98, 104123 (2023).
Google Scholar
Tuia, D. et al. Artificial intelligence to advance earth observation: a review of models, recent trends, and pathways forward. IEEE Geoscience and Remote Sensing Magazine, 2–25 (IEEE, 2024). The paper discusses the potential of artificial intelligence to enhance Earth observation capabilities, emphasizing its role in improving data analysis and interpretation.
Schlund, M. et al. Constraining uncertainty in projected gross primary production with machine learning. J. Geophys. Res.: Biogeosci. 125, e2019JG005619 (2020).
Google Scholar
Srinivasan, R., Wang, L. & Bulleid, J. Machine learning-based climate time series anomaly detection using convolutional neural networks. Weather Clim. 40, 16–31 (2020).
Google Scholar
Dikshit, A., Pradhan, B., Assiri, M. E., Almazroui, M. & Park, H.-J. Solving transparency in drought forecasting using attention models. Sci. Total Environ. 837, 155856 (2022).
Google Scholar
Barnes, E. A., Barnes, R. J., Martin, Z. K. & Rader, J. K. This looks like that there: interpretable neural networks for image tasks when location matters. Artif. Intell. Earth Syst. 1, e220001 (2022).
Google Scholar
Mamalakis, A., Barnes, E. A. & Ebert-Uphoff, I. Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience. Artif. Intell. Earth Syst. 1, e220012 (2022).
Google Scholar
Pearl, J. Causality: Models, Reasoning, and Inference 2nd edn (MIT Press, 2017).
Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference—Foundations and Learning Algorithms Adaptive Computation and Machine Learning Series (MIT Press, 2017).
Camps-Valls, G. et al. Discovering causal relations and equations from data. Phys. Rep. 1044, 1–68 (2023). This comprehensive review explores methods for uncovering causal relationships and deriving equations from data, with applications across various scientific fields.
Google Scholar
Runge, J., Gerhardus, A., Varando, G., Eyring, V. & Camps-Valls, G. Causal inference for time series. Nat. Rev. Earth Environ. 4, 487–505 (2023).
Google Scholar
Gnecco, N., Meinshausen, N., Peters, J. & Engelke, S. Causal discovery in heavy-tailed models. Ann. Stat. 49, 1755–1778 (2019).
Pasche, O. C., Chavez-Demoulin, V. & Davison, A. C. Causal modelling of heavy-tailed variables and confounders with application to river flow. Extremes 26, 573 – 594 (2021).
Google Scholar
Kiriliouk, A. & Naveau, P. Climate extreme event attribution using multivariate peaks-over-thresholds modeling and counterfactual theory. Ann. Appl. Stat. 14, 1342 – 1358 (2020).
Google Scholar
Trok, J. T., Barnes, E. A., Davenport, F. V. & Diffenbaugh, N. S. Machine learning–based extreme event attribution. Sci. Adv. 10, eadl3242 (2024).
Google Scholar
Naveau, P., Hannart, A. & Ribes, A. Statistical methods for extreme event attribution in climate science. Annu. Rev. Stat. Appl. 7, 89–110 (2020).
Google Scholar
Otto, F. E. Attribution of extreme events to climate change. Annu. Rev. Environ. Resour. 48, 813–828 (2023). The article reviews progress in attributing extreme weather events to climate change, highlighting methodological advancements and challenges in the field.
Google Scholar
Pasini, A., Racca, P., Amendola, S., Cartocci, G. & Cassardo, C. Attribution of recent temperature behaviour reassessed by a neural-network method. Sci. Rep. 7, 17681 (2017).
Google Scholar
Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C. & Anderson, D. Viewing forced climate patterns through an AI lens. Geophys. Res. Lett. 46, 13389–13398 (2019).
Google Scholar
Barnes, E. A. et al. Indicator patterns of forced change learned by an artificial neural network. J. Adv. Model. Earth Syst. 12, e2020MS002195 (2020).
Google Scholar
Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35–41 (2020).
Google Scholar
Ham, Y.-G. et al. Anthropogenic fingerprints in daily precipitation revealed by deep learning. Nature 622, 301–307 (2023).
Google Scholar
de Vries, I. E., Sippel, S., Pendergrass, A. G. & Knutti, R. Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth Syst. Dyn. 14, 81–100 (2023).
Google Scholar
Watt-Meyer, O. et al. Ace: a fast, skillful learned global atmospheric model for climate prediction. 2310.02074. (2023).
Ghanem, R., Higdon, D. & Owhadi, H. Handbook of Uncertainty Quantification (Springer, 2017).
Xu, L., Chen, N., Yang, C., Yu, H. & Chen, Z. Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning. Hydrol. Earth Syst. Sci. 26, 2923–2938 (2022).
Google Scholar
Bella, A., Ferri, C., Hernández-Orallo, J. & Ramírez-Quintana, M. in Calibration of Machine Learning Models 128–146 (IGI Global, 2010).
Macherera, M. & Chimbari, M. J. A review of studies on community based early warning systems. JAMBA 8, 206 (2016).
Reichstein, M. et al. Early warning of complex climate risk with integrated artificial intelligence. Nature Communications (accepted) (2025).
Corps, I. M. Libya flooding: Situation report #9 (2023).
Tradowsky, J. S. et al. Attribution of the heavy rainfall events leading to severe flooding in western europe during july 2021. Clim. Chang. 176, 90 (2023).
Google Scholar
Attribution, W. W. Extreme downpours increasing in southern Spain as fossil fuel emissions heat the climate, accessed 5 November 2024. (2024).
Tojcic, I., Denamiel, C. & Vilibic, I. Performance of the Adriatic early warning system during the multi-meteotsunami event of 11-19 May 2020: an assessment using energy banners. Nat. Hazard. Earth Sys. Sci. 21, 2427–2446 (2021).
Yore, R. & Walker, J. Early warning systems and evacuation: rare and extreme vs frequent and small-scale tropical cyclones in the Philippines and Dominica. Disasters 45, 691–716 (2020).
Tamamadin, M. et al. Automation process to support an information system on extreme weather warning. IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2020).
AI, H. Ethics guidlines for trustworthy AI: high-level expert group on artificial intelligence. (2018).
Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 389–399 (2019).
Google Scholar
Kochupillai, M., Kahl, M., Schmitt, M., Taubenböck, H. & Zhu, X. X. Earth observation and artificial intelligence: understanding emerging ethical issues and opportunities. IEEE Geosci. Remote Sens. Mag. 10, 90–124 (2022).
Google Scholar
Ramos, M., van Andel, S. & Pappenberger, F. Do probabilistic forecasts lead to better decisions? Hydrol. Earth Syst. Sci. 17, 2219–2232 (2013).
Google Scholar
Giuliani, M., Pianosi, F. & Castelletti, A. Making the most of data: an information selection and assessment framework to improve water systems operations. Water Resour. Res. 51, 9073–9093 (2015).
Google Scholar
Camps-Valls, G., Tuia, D., Zhu, X. X. & Reichstein, M. Deep learning for the Earth Sciences: A comprehensive Approach to Remote Sensing, Climate Science and Geosciences (John Wiley & Sons, 2021).
Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019). The authors discuss how deep learning can enhance process understanding in Earth system science, bridging data-driven approaches with traditional modeling.
Google Scholar
Iles, C. E. et al. The benefits of increasing resolution in global and regional climate simulations for european climate extremes. Geosci. Model Dev. 13, 5583–5607 (2020).
Google Scholar
Cheng, S. et al. Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA J. Autom. Sin. 10, 1361–1387 (2023).
Google Scholar
Haynes, K., Lagerquist, R., McGraw, M., Musgrave, K. & Ebert-Uphoff, I. Creating and evaluating uncertainty estimates with neural networks for environmental-science applications. Artif. Intell. Earth Syst. 2, 220061 (2023).
Google Scholar
Li, W., Pan, B., Xia, J. & Duan, Q. Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. J. Hydrol. 605, 127301 (2022).
Google Scholar
Farazmand, M. & Sapsis, T. P. Extreme events: mechanisms and prediction. Appl. Mech. Rev. 71, 050801 (2019).
Google Scholar
Zhang, M., Fernández-Torres, M. A. & Camps-Valls, G. Domain knowledge-driven variational recurrent networks for drought monitoring. Remote Sens. Environ. 311, 114252 (2024).
Ronco, M. & Camps-Valls, G. Role of locality, fidelity and symmetry regularization in learning explainable representations. Neurocomputing 562, 126884 (2023).
Google Scholar
Roscher, R., Bohn, B., Duarte, M. F. & Garcke, J. Explain it to me-facing remote sensing challenges in the bio-and geosciences with explainable machine learning. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 5, 817–824 (2020).
Beucler, T. et al. Climate-invariant machine learning. Sci. Adv. 10, eadj7250 (2024).
Google Scholar
West, H., Quinn, N. & Horswell, M. Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. Remote Sens. Environ. 232, 111291 (2019).
Google Scholar
Zargar, A., Sadiq, R., Naser, B. & Khan, F. I. A review of drought indices. Environ. Rev. 19, 333–349 (2011).
Google Scholar
Dikshit, A. & Pradhan, B. Interpretable and explainable AI (XAI) model for spatial drought prediction. Sci. Total Environ. 801, 149797 (2021).
Google Scholar
Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. & Salcedo-Sanz, S. Heat waves: physical understanding and scientific challenges. Rev. Geophys. 61, e2022RG000780 (2023).
Google Scholar
Teng, H., Leung, R., Branstator, G., Lu, J. & Ding, Q. Warming pattern over the northern hemisphere midlatitudes in boreal summer 1979–2020. J. Clim. 35, 3479–3494 (2022).
Google Scholar
Vautard, R. et al. Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends. Nat. Commun. 14, 6803 (2023). This study finds that heat extremes in Western Europe are intensifying more rapidly than climate models predict, attributed to changes in atmospheric circulation.
Google Scholar
Jacques-Dumas, V., Ragone, F., Borgnat, P., Abry, P. & Bouchet, F. Deep learning-based extreme heatwave forecast. Front. Clim. 4, 789641 (2022).
Google Scholar
Fister, D., Pérez-Aracil, J., Peláez-Rodríguez, C., Del Ser, J. & Salcedo-Sanz, S. Accurate long-term air temperature prediction with machine learning models and data reduction techniques. Appl. Soft Comput. 136, 110118 (2023).
Google Scholar
van Straaten, C., Whan, K., Coumou, D., van den Hurk, B. & Schmeits, M. Correcting subseasonal forecast errors with an explainable ann to understand misrepresented sources of predictability of european summer temperatures. Artif. Intell. Earth Syst. 2, e220047 (2023).
Khan, M. I. & Maity, R. Hybrid deep learning approach for multi-step-ahead prediction for daily maximum temperature and heatwaves. Theor. Appl. Climatol. 149, 945–963 (2022).
Google Scholar
Happé, T. et al. Detecting spatio-temporal dynamics of western european heatwaves using deep learning. Artif. Intell. Earth Syst. (2024).
Gao, Z. et al. Earthformer: Exploring space-time transformers for Earth system forecasting. Adv. Neural Inf. Process. Syst. 35, 25390–25403 (2022).
Sun, Y. Q. et al. Can AI weather models predict out-of-distribution gray swan tropical cyclones? arXiv preprint arXiv:2410.14932 (2024).
Lopez-Gomez, I., McGovern, A., Agrawal, S. & Hickey, J. Global extreme heat forecasting using neural weather models. Artif. Intell. Earth Syst. 2, e220035 (2023).
Pouplin, T., Jeffares, A., Seedat, N. & van der Schaar, M. Relaxed quantile regression: Prediction intervals for asymmetric noise. arXiv preprint arXiv:2406.03258 (2024).
Trok, J. T., Davenport, F. V., Barnes, E. A. & Diffenbaugh, N. S. Using machine learning with partial dependence analysis to investigate coupling between soil moisture and near-surface temperature. J. Geophys. Res. Atmos. 128, e2022JD038365 (2023).
Google Scholar
Singh, J., Sippel, S. & Fischer, E. M. Circulation dampened heat extremes intensification over the midwest USA and amplified over western europe. Commun. Earth Environ. 4, 1–9 (2023).
Google Scholar
Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).
Google Scholar
El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe faces up to tenfold increase in extreme fires in a warming climate. npj Clim. Atmos. Sci. 7, 1–11 (2024).
Google Scholar
Zhang, G., Wang, M. & Liu, K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. Int. J. Disaster Risk Sci. 10, 386–403 (2019).
Google Scholar
Li, F. et al. Attentionfire_v1. 0: interpretable machine learning fire model for burned-area predictions over tropics. Geosci. Model Dev. 16, 869–884 (2023).
Google Scholar
Singh, H. et al. Trending and emerging prospects of physics-based and ml-based wildfire spread models: a comprehensive review. J. For. Res. 35, 1–33 (2024).
Google Scholar
Fromm, M., Servranckx, R., Stocks, B. J. & Peterson, D. A. Understanding the critical elements of the pyrocumulonimbus storm sparked by high-intensity wildland fire. Commun. Earth Environ. 3, 1–7 (2022).
Google Scholar
Salas-Porras, E. D. et al. Identifying the Causes of Pyrocumulonimbus (PyroCb) (2022).
Jonkman, S. Global perspectives on loss of human life caused by floods. Nat. Hazards 34, 151–175 (2005).
Google Scholar
Cornwall, W. Europe’s deadly floods leave scientists stunned. Science 373, 372–373 (2021).
Google Scholar
Mohr, S. et al. A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe–Part 1: Event description and analysis. Nat. Hazards Earth Syst. Sci. 23, 525–551 (2023).
Google Scholar
Xie, K. et al. Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships. J. Hydrol. 603, 127043 (2021).
Google Scholar
Kraft, B., Jung, M., Körner, M., Koirala, S. & Reichstein, M. Towards hybrid modeling of the global hydrological cycle. Hydrol. Earth Syst. Sci. Discuss. 2021, 1–40 (2021).
Google Scholar
Kochkov, D. et al. Machine learning–accelerated computational fluid dynamics. Proc. Natl Acad. Sci. USA 118, e2101784118 (2021).
Google Scholar
Lutjens, B. et al. Physically-consistent generative adversarial networks for coastal flood visualization. (2023).
link