• Fri. Apr 18th, 2025

Christina Antonelli

Connecting the World, Technology in Time

Artificial intelligence for modeling and understanding extreme weather and climate events

Artificial intelligence for modeling and understanding extreme weather and climate events
  • Seneviratne, S.-I. et al. Weather and Climate Extreme Events in a Changing Climate (Cambridge University Press, 2021).

  • Gonzalez-Calabuig, M. et al. The AIDE toolbox: AI for disentangling extreme events. IEEE Geosci. Remote Sens. Mag. 12, 1–8 (2024).

    Article 

    Google Scholar 

  • Lam, R. et al. Learning skillful medium-range global weather forecasting. Science 382, 1416–1422 (2023). This study introduces a machine learning model that enhances medium-range global weather forecasts, outperforming traditional methods in accuracy.

    Article 
    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Ferchichi, A., Abbes, A. B., Barra, V. & Farah, I. R. Forecasting vegetation indices from spatio-temporal remotely sensed data using deep learning-based approaches: a systematic literature review. Ecol. Inform. 68, 101552 (2022).

    Article 

    Google Scholar 

  • Ragone, F. & Bouchet, F. Rare event algorithm study of extreme warm summers and heatwaves over Europe. Geophys. Res. Lett. 48, e2020GL091197 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Yokota, F. & Thompson, K. Value of information analysis in environmental health risk management decisions: past, present, and future. Risk Anal. 24, 635–650 (2004).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Salcedo-Sanz, S. et al. Analysis, characterization, prediction, and attribution of extreme atmospheric events with machine learning and deep learning techniques: a review. Theor. Appl. Climatol. 155, 1–44 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Gawlikowski, J. et al. A survey of uncertainty in deep neural networks. Artif. Intell. Rev. 56, 1513–1589 (2023).

    Article 
    MATH 

    Google Scholar 

  • Harrington, L. J., Schleussner, C. F. & Otto, F. E. Quantifying uncertainty in aggregated climate change risk assessments. Nat. Commun. 12, 7140 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Stott, P. A. et al. Attribution of extreme weather and climate-related events. Wiley Interdiscip. Rev. Clim. Chang. 7, 23–41 (2016). The paper reviews methodologies linking specific extreme weather events to human-induced climate change, highlighting advancements in attribution science.

    Article 
    MATH 

    Google Scholar 

  • Madakumbura, G. D., Thackeray, C. W., Norris, J., Goldenson, N. & Hall, A. Anthropogenic influence on extreme precipitation over global land areas seen in multiple observational datasets. Nat. Commun. 12, 3944 (2021).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chattopadhyay, A., Nabizadeh, E. & Hassanzadeh, P. Analog forecasting of extreme-causing weather patterns using deep learning. J. Adv. Model. Earth Syst. 12, e2019MS001958 (2020).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Bommer, P. L., Kretschmer, M., Hedstrom, A., Bareeva, D. & Hohne, M. M.-C. Finding the right XAI method—a guide for the evaluation and ranking of explainable AI methods in climate science. Artif. Intell. Earth Syst. 3, e230074 (2024).

  • Hannart, A., Pearl, J., Otto, F. E. L., Naveau, P. & Ghil, M. Causal counterfactual theory for the attribution of weather and climate-related events. Bull. Am. Meteorol. Soc. 97, 99–110 (2016). The authors develop a causal counterfactual framework to assess the influence of specific factors on weather and climate events, enhancing attribution accuracy.

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Vaghefi, S. A. et al. ChatClimate: grounding conversational AI in climate science. Commun. Earth Environ. 4, 480 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Olivetti, L. & Messori, G. Advances and prospects of deep learning for medium-range extreme weather forecasting. Geosci. Model Dev. 17, 2347–2358 (2024).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Materia, S. et al. Artificial intelligence for climate prediction of extremes: state of the art, challenges, and future perspectives. WIREs Clim. Chang. n/a, e914 (2024).

    Article 

    Google Scholar 

  • Ruff, L. et al. A unifying review of deep and shallow anomaly detection. Proc. IEEE 109, 756–795 (2021).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Han, Z., Zhao, J., Leung, H., Ma, K. F. & Wang, W. A review of deep learning models for time series prediction. IEEE Sens. J. 21, 7833–7848 (2019).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Zennaro, F. et al. Exploring machine learning potential for climate change risk assessment. Earth Sci. Rev. 220, 103752 (2021).

    Article 
    MATH 

    Google Scholar 

  • Jones, R. L., Kharb, A. & Tubeuf, S. The untold story of missing data in disaster research: a systematic review of the empirical literature utilising the emergency events database (EM-DAT). Environ. Res. Lett. 18, 103006 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Mahecha, M. D. et al. Detecting impacts of extreme events with ecological in situ monitoring networks. Biogeosciences 14, 4255–4277 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Flach, M. et al. Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques. Earth Syst. Dyn. 8, 677–696 (2017).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Prabhat. et al. ClimateNet: an expert-labelled open dataset and Deep Learning architecture for enabling high-precision analyses of extreme weather. Geosci. Model Dev. Discuss. 2020, 1–28 (2020).

  • Racah, E. et al. Extremeweather: a large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events. Advances in Neural Information Processing Systems (NeurIPS) 30 (2017).

  • Guanche García, Y., Shadaydeh, M., Mahecha, M. & Denzler, J. Extreme anomaly event detection in biosphere using linear regression and a spatiotemporal MRF model. Nat. Hazards 98, 849–867 (2018).

    Article 

    Google Scholar 

  • Klehmet, K. et al. Robustness of hydrometeorological extremes in surrogated seasonal forecasts. Int. J. Climatol. 44, 1725–1738 (2024).

    Article 
    MATH 

    Google Scholar 

  • Johnson, J. E., Laparra, V., Pérez-Suay, A., Mahecha, M. & Camps-Valls, G. Kernel methods and their derivatives: concept and perspectives for the Earth system sciences. PLoS ONE 15, p.e0235885 (2020).

    Article 
    MATH 

    Google Scholar 

  • Johnson, J. E., Laparra, V., Piles, M. & Camps-Valls, G. Gaussianizing the Earth: multidimensional information measures for Earth data analysis. IEEE Geosci. Remote Sens. Mag. 9, 191–208 (2021).

    Article 
    MATH 

    Google Scholar 

  • Allen, S., Koh, J., Segers, J. & Ziegel, J. Tail calibration of probabilistic forecasts. arXiv preprint arXiv:2407.03167 (2024).

  • Boulaguiem, Y., Zscheischler, J., Vignotto, E., van der Wiel, K. & Engelke, S. Modeling and simulating spatial extremes by combining extreme value theory with generative adversarial networks. Environ. Data Sci. 1, e5 (2022).

    Article 
    MATH 

    Google Scholar 

  • Vijverberg, S. & Coumou, D. The role of the Pacific Decadal Oscillation and ocean-atmosphere interactions in driving US temperature variability. npj Clim. Atmos. Sci. 5, 18 (2022).

    Article 

    Google Scholar 

  • Kladny, K.-R., Milanta, M., Mraz, O., Hufkens, K. & Stocker, B. D. Enhanced prediction of vegetation responses to extreme drought using deep learning and Earth observation data. Ecol. Inform. 80, 102474 (2024).

    Article 

    Google Scholar 

  • Bentivoglio, R., Isufi, E., Jonkman, S. N. & Taormina, R. Deep learning methods for flood mapping: a review of existing applications and future research directions. Hydrol. Earth Syst. Sci. 26, 4345–4378 (2022).

    Article 
    ADS 

    Google Scholar 

  • Belayneh, A., Adamowski, J., Khalil, B. & Ozga-Zielinski, B. Long-term SPI drought forecasting in the Awash River Basin in Ethiopia using wavelet neural network and wavelet support vector regression models. J. Hydrol. 508, 418–429 (2014).

    Article 
    ADS 

    Google Scholar 

  • Kondylatos, S. et al. Wildfire danger prediction and understanding with deep learning. Geophys. Res. Lett. 49, e2022GL099368 (2022).

    Article 
    ADS 

    Google Scholar 

  • Nearing, G. et al. Global prediction of extreme floods in ungauged watersheds. Nature 627, 559–563 (2024).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Zhang, G., Wang, M. & Liu, K. Deep neural networks for global wildfire susceptibility modelling. Ecol. Indic. 127, 107735 (2021).

    Article 

    Google Scholar 

  • Vo, T. Q., Kim, S.-H., Nguyen, D. H. & Bae, D.-H. LSTM-CM: a hybrid approach for natural drought prediction based on deep learning and climate models. Stoch. Environ. Res. Risk Assess. 37, 2035–2051 (2023).

    Article 
    MATH 

    Google Scholar 

  • Shi, X. Enabling smart dynamical downscaling of extreme precipitation events with machine learning. Geophys. Res. Lett. 47, e2020GL090309 (2020).

    Article 
    ADS 

    Google Scholar 

  • Miloshevich, G., Cozian, B., Abry, P., Borgnat, P. & Bouchet, F. Probabilistic forecasts of extreme heatwaves using convolutional neural networks in a regime of lack of data. Phys. Rev. Fluids 8, 40501 (2023).

    Article 
    ADS 

    Google Scholar 

  • Callaghan, M. et al. Machine-learning-based evidence and attribution mapping of 100,000 climate impact studies. Nat. Clim. Chang. 11, 966–972 (2021).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Sutanto, S. J. et al. Moving from drought hazard to impact forecasts. Nat. Commun. 10, 4945 (2019).

    Article 
    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Salakpi, E. E. et al. Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model. Nat. Hazards Earth Syst. Sci. 22, 2703–2723 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Martinuzzi, F. et al. Learning extreme vegetation response to climate drivers with recurrent neural networks. Nonlinear Process. Geophys. 31, 535–557 (2024).

    Article 
    MATH 

    Google Scholar 

  • Ahmad, R., Yang, B., Ettlin, G., Berger, A. & Rodríguez-Bocca, P. A machine-learning based ConvLSTM architecture for NDVI forecasting. Int. Trans. Oper. Res. 30, 2025–2048 (2023).

    Article 
    MATH 

    Google Scholar 

  • Benson, V. et al. Forecasting Localized Weather Impacts on Vegetation as Seen from Space with Meteo-Guided Video Prediction. (2024).

  • Ronco, M. et al. Exploring interactions between socioeconomic context and natural hazards on human population displacement. Nat. Commun. 14, 8004 (2023). This study uses XAI to explain how socioeconomic factors and natural hazards influence human displacement, revealing that vulnerable communities are disproportionately affected.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Sodoge, J., Kuhlicke, C. & de Brito, M. M. Automatized spatio-temporal detection of drought impacts from newspaper articles using natural language processing and machine learning. Weather Clim. Extrem. 41, 100574 (2023).

    Article 

    Google Scholar 

  • Bostrom, A. et al. Trust and trustworthy artificial intelligence: a research agenda for ai in the environmental sciences. Risk Anal. 44, 1498–1513 (2024).

    Article 
    PubMed 
    MATH 

    Google Scholar 

  • Ghaffarian, S., Taghikhah, F. R. & Maier, H. R. Explainable artificial intelligence in disaster risk management: achievements and prospective futures. Int. J. Disaster Risk Reduct. 98, 104123 (2023).

    Article 

    Google Scholar 

  • Tuia, D. et al. Artificial intelligence to advance earth observation: a review of models, recent trends, and pathways forward. IEEE Geoscience and Remote Sensing Magazine, 2–25 (IEEE, 2024). The paper discusses the potential of artificial intelligence to enhance Earth observation capabilities, emphasizing its role in improving data analysis and interpretation.

  • Schlund, M. et al. Constraining uncertainty in projected gross primary production with machine learning. J. Geophys. Res.: Biogeosci. 125, e2019JG005619 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Srinivasan, R., Wang, L. & Bulleid, J. Machine learning-based climate time series anomaly detection using convolutional neural networks. Weather Clim. 40, 16–31 (2020).

    Article 
    MATH 

    Google Scholar 

  • Dikshit, A., Pradhan, B., Assiri, M. E., Almazroui, M. & Park, H.-J. Solving transparency in drought forecasting using attention models. Sci. Total Environ. 837, 155856 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barnes, E. A., Barnes, R. J., Martin, Z. K. & Rader, J. K. This looks like that there: interpretable neural networks for image tasks when location matters. Artif. Intell. Earth Syst. 1, e220001 (2022).

    MATH 

    Google Scholar 

  • Mamalakis, A., Barnes, E. A. & Ebert-Uphoff, I. Investigating the fidelity of explainable artificial intelligence methods for applications of convolutional neural networks in geoscience. Artif. Intell. Earth Syst. 1, e220012 (2022).

    MATH 

    Google Scholar 

  • Pearl, J. Causality: Models, Reasoning, and Inference 2nd edn (MIT Press, 2017).

  • Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference—Foundations and Learning Algorithms Adaptive Computation and Machine Learning Series (MIT Press, 2017).

  • Camps-Valls, G. et al. Discovering causal relations and equations from data. Phys. Rep. 1044, 1–68 (2023). This comprehensive review explores methods for uncovering causal relationships and deriving equations from data, with applications across various scientific fields.

    Article 
    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Runge, J., Gerhardus, A., Varando, G., Eyring, V. & Camps-Valls, G. Causal inference for time series. Nat. Rev. Earth Environ. 4, 487–505 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Gnecco, N., Meinshausen, N., Peters, J. & Engelke, S. Causal discovery in heavy-tailed models. Ann. Stat. 49, 1755–1778 (2019).

  • Pasche, O. C., Chavez-Demoulin, V. & Davison, A. C. Causal modelling of heavy-tailed variables and confounders with application to river flow. Extremes 26, 573 – 594 (2021).

    MathSciNet 
    MATH 

    Google Scholar 

  • Kiriliouk, A. & Naveau, P. Climate extreme event attribution using multivariate peaks-over-thresholds modeling and counterfactual theory. Ann. Appl. Stat. 14, 1342 – 1358 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Trok, J. T., Barnes, E. A., Davenport, F. V. & Diffenbaugh, N. S. Machine learning–based extreme event attribution. Sci. Adv. 10, eadl3242 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naveau, P., Hannart, A. & Ribes, A. Statistical methods for extreme event attribution in climate science. Annu. Rev. Stat. Appl. 7, 89–110 (2020).

    Article 
    MathSciNet 
    MATH 

    Google Scholar 

  • Otto, F. E. Attribution of extreme events to climate change. Annu. Rev. Environ. Resour. 48, 813–828 (2023). The article reviews progress in attributing extreme weather events to climate change, highlighting methodological advancements and challenges in the field.

    Article 
    MATH 

    Google Scholar 

  • Pasini, A., Racca, P., Amendola, S., Cartocci, G. & Cassardo, C. Attribution of recent temperature behaviour reassessed by a neural-network method. Sci. Rep. 7, 17681 (2017).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barnes, E. A., Hurrell, J. W., Ebert-Uphoff, I., Anderson, C. & Anderson, D. Viewing forced climate patterns through an AI lens. Geophys. Res. Lett. 46, 13389–13398 (2019).

    Article 
    ADS 

    Google Scholar 

  • Barnes, E. A. et al. Indicator patterns of forced change learned by an artificial neural network. J. Adv. Model. Earth Syst. 12, e2020MS002195 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35–41 (2020).

    Article 
    ADS 

    Google Scholar 

  • Ham, Y.-G. et al. Anthropogenic fingerprints in daily precipitation revealed by deep learning. Nature 622, 301–307 (2023).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • de Vries, I. E., Sippel, S., Pendergrass, A. G. & Knutti, R. Robust global detection of forced changes in mean and extreme precipitation despite observational disagreement on the magnitude of change. Earth Syst. Dyn. 14, 81–100 (2023).

    Article 
    ADS 

    Google Scholar 

  • Watt-Meyer, O. et al. Ace: a fast, skillful learned global atmospheric model for climate prediction. 2310.02074. (2023).

  • Ghanem, R., Higdon, D. & Owhadi, H. Handbook of Uncertainty Quantification (Springer, 2017).

  • Xu, L., Chen, N., Yang, C., Yu, H. & Chen, Z. Quantifying the uncertainty of precipitation forecasting using probabilistic deep learning. Hydrol. Earth Syst. Sci. 26, 2923–2938 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Bella, A., Ferri, C., Hernández-Orallo, J. & Ramírez-Quintana, M. in Calibration of Machine Learning Models 128–146 (IGI Global, 2010).

  • Macherera, M. & Chimbari, M. J. A review of studies on community based early warning systems. JAMBA 8, 206 (2016).

  • Reichstein, M. et al. Early warning of complex climate risk with integrated artificial intelligence. Nature Communications (accepted) (2025).

  • Corps, I. M. Libya flooding: Situation report #9 (2023).

  • Tradowsky, J. S. et al. Attribution of the heavy rainfall events leading to severe flooding in western europe during july 2021. Clim. Chang. 176, 90 (2023).

    Article 
    ADS 

    Google Scholar 

  • Attribution, W. W. Extreme downpours increasing in southern Spain as fossil fuel emissions heat the climate, accessed 5 November 2024. (2024).

  • Tojcic, I., Denamiel, C. & Vilibic, I. Performance of the Adriatic early warning system during the multi-meteotsunami event of 11-19 May 2020: an assessment using energy banners. Nat. Hazard. Earth Sys. Sci. 21, 2427–2446 (2021).

  • Yore, R. & Walker, J. Early warning systems and evacuation: rare and extreme vs frequent and small-scale tropical cyclones in the Philippines and Dominica. Disasters 45, 691–716 (2020).

  • Tamamadin, M. et al. Automation process to support an information system on extreme weather warning. IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2020).

  • AI, H. Ethics guidlines for trustworthy AI: high-level expert group on artificial intelligence. (2018).

  • Jobin, A., Ienca, M. & Vayena, E. The global landscape of AI ethics guidelines. Nat. Mach. Intell. 1, 389–399 (2019).

    Article 

    Google Scholar 

  • Kochupillai, M., Kahl, M., Schmitt, M., Taubenböck, H. & Zhu, X. X. Earth observation and artificial intelligence: understanding emerging ethical issues and opportunities. IEEE Geosci. Remote Sens. Mag. 10, 90–124 (2022).

    Article 

    Google Scholar 

  • Ramos, M., van Andel, S. & Pappenberger, F. Do probabilistic forecasts lead to better decisions? Hydrol. Earth Syst. Sci. 17, 2219–2232 (2013).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Giuliani, M., Pianosi, F. & Castelletti, A. Making the most of data: an information selection and assessment framework to improve water systems operations. Water Resour. Res. 51, 9073–9093 (2015).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Camps-Valls, G., Tuia, D., Zhu, X. X. & Reichstein, M. Deep learning for the Earth Sciences: A comprehensive Approach to Remote Sensing, Climate Science and Geosciences (John Wiley & Sons, 2021).

  • Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019). The authors discuss how deep learning can enhance process understanding in Earth system science, bridging data-driven approaches with traditional modeling.

    Article 
    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Iles, C. E. et al. The benefits of increasing resolution in global and regional climate simulations for european climate extremes. Geosci. Model Dev. 13, 5583–5607 (2020).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Cheng, S. et al. Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review. IEEE/CAA J. Autom. Sin. 10, 1361–1387 (2023).

    Article 
    MATH 

    Google Scholar 

  • Haynes, K., Lagerquist, R., McGraw, M., Musgrave, K. & Ebert-Uphoff, I. Creating and evaluating uncertainty estimates with neural networks for environmental-science applications. Artif. Intell. Earth Syst. 2, 220061 (2023).

    MATH 

    Google Scholar 

  • Li, W., Pan, B., Xia, J. & Duan, Q. Convolutional neural network-based statistical post-processing of ensemble precipitation forecasts. J. Hydrol. 605, 127301 (2022).

    Article 
    MATH 

    Google Scholar 

  • Farazmand, M. & Sapsis, T. P. Extreme events: mechanisms and prediction. Appl. Mech. Rev. 71, 050801 (2019).

    Article 
    MATH 

    Google Scholar 

  • Zhang, M., Fernández-Torres, M. A. & Camps-Valls, G. Domain knowledge-driven variational recurrent networks for drought monitoring. Remote Sens. Environ. 311, 114252 (2024).

  • Ronco, M. & Camps-Valls, G. Role of locality, fidelity and symmetry regularization in learning explainable representations. Neurocomputing 562, 126884 (2023).

    Article 
    MATH 

    Google Scholar 

  • Roscher, R., Bohn, B., Duarte, M. F. & Garcke, J. Explain it to me-facing remote sensing challenges in the bio-and geosciences with explainable machine learning. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 5, 817–824 (2020).

  • Beucler, T. et al. Climate-invariant machine learning. Sci. Adv. 10, eadj7250 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • West, H., Quinn, N. & Horswell, M. Remote sensing for drought monitoring & impact assessment: progress, past challenges and future opportunities. Remote Sens. Environ. 232, 111291 (2019).

    Article 

    Google Scholar 

  • Zargar, A., Sadiq, R., Naser, B. & Khan, F. I. A review of drought indices. Environ. Rev. 19, 333–349 (2011).

    Article 
    MATH 

    Google Scholar 

  • Dikshit, A. & Pradhan, B. Interpretable and explainable AI (XAI) model for spatial drought prediction. Sci. Total Environ. 801, 149797 (2021).

    Article 
    CAS 
    PubMed 
    MATH 

    Google Scholar 

  • Barriopedro, D., García-Herrera, R., Ordóñez, C., Miralles, D. & Salcedo-Sanz, S. Heat waves: physical understanding and scientific challenges. Rev. Geophys. 61, e2022RG000780 (2023).

    Article 
    ADS 

    Google Scholar 

  • Teng, H., Leung, R., Branstator, G., Lu, J. & Ding, Q. Warming pattern over the northern hemisphere midlatitudes in boreal summer 1979–2020. J. Clim. 35, 3479–3494 (2022).

    Article 
    ADS 

    Google Scholar 

  • Vautard, R. et al. Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends. Nat. Commun. 14, 6803 (2023). This study finds that heat extremes in Western Europe are intensifying more rapidly than climate models predict, attributed to changes in atmospheric circulation.

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar 

  • Jacques-Dumas, V., Ragone, F., Borgnat, P., Abry, P. & Bouchet, F. Deep learning-based extreme heatwave forecast. Front. Clim. 4, 789641 (2022).

    Article 
    MATH 

    Google Scholar 

  • Fister, D., Pérez-Aracil, J., Peláez-Rodríguez, C., Del Ser, J. & Salcedo-Sanz, S. Accurate long-term air temperature prediction with machine learning models and data reduction techniques. Appl. Soft Comput. 136, 110118 (2023).

    Article 

    Google Scholar 

  • van Straaten, C., Whan, K., Coumou, D., van den Hurk, B. & Schmeits, M. Correcting subseasonal forecast errors with an explainable ann to understand misrepresented sources of predictability of european summer temperatures. Artif. Intell. Earth Syst. 2, e220047 (2023).

    Google Scholar 

  • Khan, M. I. & Maity, R. Hybrid deep learning approach for multi-step-ahead prediction for daily maximum temperature and heatwaves. Theor. Appl. Climatol. 149, 945–963 (2022).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Happé, T. et al. Detecting spatio-temporal dynamics of western european heatwaves using deep learning. Artif. Intell. Earth Syst. (2024).

  • Gao, Z. et al. Earthformer: Exploring space-time transformers for Earth system forecasting. Adv. Neural Inf. Process. Syst. 35, 25390–25403 (2022).

    Google Scholar 

  • Sun, Y. Q. et al. Can AI weather models predict out-of-distribution gray swan tropical cyclones? arXiv preprint arXiv:2410.14932 (2024).

  • Lopez-Gomez, I., McGovern, A., Agrawal, S. & Hickey, J. Global extreme heat forecasting using neural weather models. Artif. Intell. Earth Syst. 2, e220035 (2023).

  • Pouplin, T., Jeffares, A., Seedat, N. & van der Schaar, M. Relaxed quantile regression: Prediction intervals for asymmetric noise. arXiv preprint arXiv:2406.03258 (2024).

  • Trok, J. T., Davenport, F. V., Barnes, E. A. & Diffenbaugh, N. S. Using machine learning with partial dependence analysis to investigate coupling between soil moisture and near-surface temperature. J. Geophys. Res. Atmos. 128, e2022JD038365 (2023).

    Article 
    ADS 

    Google Scholar 

  • Singh, J., Sippel, S. & Fischer, E. M. Circulation dampened heat extremes intensification over the midwest USA and amplified over western europe. Commun. Earth Environ. 4, 1–9 (2023).

    Article 
    ADS 

    Google Scholar 

  • Jones, M. W. et al. Global and regional trends and drivers of fire under climate change. Rev. Geophys. 60, e2020RG000726 (2022).

    Article 
    ADS 

    Google Scholar 

  • El Garroussi, S., Di Giuseppe, F., Barnard, C. & Wetterhall, F. Europe faces up to tenfold increase in extreme fires in a warming climate. npj Clim. Atmos. Sci. 7, 1–11 (2024).

    Article 

    Google Scholar 

  • Zhang, G., Wang, M. & Liu, K. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. Int. J. Disaster Risk Sci. 10, 386–403 (2019).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Li, F. et al. Attentionfire_v1. 0: interpretable machine learning fire model for burned-area predictions over tropics. Geosci. Model Dev. 16, 869–884 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Singh, H. et al. Trending and emerging prospects of physics-based and ml-based wildfire spread models: a comprehensive review. J. For. Res. 35, 1–33 (2024).

    Article 
    CAS 
    MATH 

    Google Scholar 

  • Fromm, M., Servranckx, R., Stocks, B. J. & Peterson, D. A. Understanding the critical elements of the pyrocumulonimbus storm sparked by high-intensity wildland fire. Commun. Earth Environ. 3, 1–7 (2022).

    Article 

    Google Scholar 

  • Salas-Porras, E. D. et al. Identifying the Causes of Pyrocumulonimbus (PyroCb) (2022).

  • Jonkman, S. Global perspectives on loss of human life caused by floods. Nat. Hazards 34, 151–175 (2005).

    Article 
    MATH 

    Google Scholar 

  • Cornwall, W. Europe’s deadly floods leave scientists stunned. Science 373, 372–373 (2021).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mohr, S. et al. A multi-disciplinary analysis of the exceptional flood event of July 2021 in central Europe–Part 1: Event description and analysis. Nat. Hazards Earth Syst. Sci. 23, 525–551 (2023).

    Article 
    ADS 
    MATH 

    Google Scholar 

  • Xie, K. et al. Physics-guided deep learning for rainfall-runoff modeling by considering extreme events and monotonic relationships. J. Hydrol. 603, 127043 (2021).

    Article 
    MATH 

    Google Scholar 

  • Kraft, B., Jung, M., Körner, M., Koirala, S. & Reichstein, M. Towards hybrid modeling of the global hydrological cycle. Hydrol. Earth Syst. Sci. Discuss. 2021, 1–40 (2021).

    MATH 

    Google Scholar 

  • Kochkov, D. et al. Machine learning–accelerated computational fluid dynamics. Proc. Natl Acad. Sci. USA 118, e2101784118 (2021).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lutjens, B. et al. Physically-consistent generative adversarial networks for coastal flood visualization. (2023).

  • link

    By admin