• Thu. Sep 19th, 2024

Christina Antonelli

Connecting the World, Technology in Time

Network model with internal complexity bridges artificial intelligence and neuroscience

Network model with internal complexity bridges artificial intelligence and neuroscience
  • Ouyang, L. et al. Training language models to follow instructions with human feedback. in Advances in Neural Information Processing Systems Vol. 35 27730–27744 (NeurIPS, 2022).

  • Raffel, C. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 21, 5485–5551 (2020).

    MathSciNet 

    Google Scholar 

  • Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at (2021).

  • Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 386 (1958).

    Article 

    Google Scholar 

  • LeCun, Y. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1, 541–551 (1989).

    Article 

    Google Scholar 

  • Krizhevsky, A., Sutskever, I. & Hinton, G. E. Imagenet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017).

    Article 

    Google Scholar 

  • He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. in Proc. IEEE Conference on Computer Vision and Pattern Recognition 770–778 (IEEE, 2016).

  • Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article 
    MathSciNet 

    Google Scholar 

  • Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article 

    Google Scholar 

  • Cho, K. et al. Learning phrase representations using RNN encoder–decoder for statistical machine translation. Preprint at (2014).

  • Vaswani, A. et al. Attention is all you need. in 31st Conference on Neural Information Processing Systems (NIPS, 2017).

  • Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. in Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers) 4171–4186 (Association for Computational Linguistics, 2019).

  • Dosovitskiy, A. et al. An image is worth 16 × 16 words: transformers for image recognition at scale. in International Conference on Learning Representations (2020).

  • Liu, Z. et al. Swin transformer: hierarchical vision transformer using shifted windows. in Proc. IEEE/CVF International Conference on Computer Vision 10012–10022 (2021).

  • Li, Y. Competition-level code generation with alphacode. Science 378, 1092–1097 (2022).

    Article 

    Google Scholar 

  • Ramesh, A., Dhariwal, P., Nichol, A., Chu, C. & Chen, M. Hierarchical text-conditional image generation with clip latents. Preprint at (2022).

  • Dauparas, J. Robust deep learning-based protein sequence design using proteinMPNN. Science 378, 49–56 (2022).

    Article 

    Google Scholar 

  • Dayan, P. & Abbott, L. F. Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems (MIT Press, 2005).

  • Markram, H. The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006).

    Article 

    Google Scholar 

  • Izhikevich, E. M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572 (2003).

    Article 

    Google Scholar 

  • Eliasmith, C. A large-scale model of the functioning brain. Science 338, 1202–1205 (2012).

    Article 

    Google Scholar 

  • Wilson, H. R. & Cowan, J. D. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12, 1–24 (1972).

    Article 

    Google Scholar 

  • FitzHugh, R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 17, 257–278 (1955).

    Article 

    Google Scholar 

  • Nagumo, J., Arimoto, S. & Yoshizawa, S. An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962).

    Article 

    Google Scholar 

  • Lapicque, L. Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarization. J. Physiol. Pathol. Générale 9, 620–635 (1907).

    Google Scholar 

  • Ermentrout, G. B. & Kopell, N. Parabolic bursting in an excitable system coupled with a slow oscillation. SIAM J. Appl. Math. 46, 233–253 (1986).

    Article 
    MathSciNet 

    Google Scholar 

  • Fourcaud-Trocmé, N., Hansel, D., Van Vreeswijk, C. & Brunel, N. How spike generation mechanisms determine the neuronal response to fluctuating inputs. J. Neurosci. 23, 11628–11640 (2003).

    Article 

    Google Scholar 

  • Teeter, C. Generalized leaky integrate-and-fire models classify multiple neuron types. Nat. Commun. 9, 709 (2018).

    Article 

    Google Scholar 

  • Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500 (1952).

    Article 

    Google Scholar 

  • Connor, J. & Stevens, C. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. 213, 31–53 (1971).

    Article 

    Google Scholar 

  • Hindmarsh, J. L. & Rose, R. A model of neuronal bursting using three coupled first order differential equations. Proc. R. Soc. Lond. B 221, 87–102 (1984).

    Article 

    Google Scholar 

  • de Menezes, M. A. & Barabási, A.-L. Separating internal and external dynamics of complex systems. Phys. Rev. Let. 93, 068701 (2004).

    Article 

    Google Scholar 

  • Ko, K.-I. On the computational complexity of ordinary differential equations. Information Control 58, 157–194 (1983).

    Article 
    MathSciNet 

    Google Scholar 

  • Waibel, A., Hanazawa, T., Hinton, G., Shikano, K. & Lang, K. J. Phoneme recognition using time-delay neural networks. IEEE Trans. Signal Proces. 37, 328–339 (1989).

    Article 

    Google Scholar 

  • Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617 (2019).

    Article 

    Google Scholar 

  • Pei, J. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572, 106–111 (2019).

    Article 

    Google Scholar 

  • Davies, M. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).

    Article 

    Google Scholar 

  • Zhou, P., Choi, D.-U., Lu, W. D., Kang, S.-M. & Eshraghian, J. K. Gradient-based neuromorphic learning on dynamical RRAM arrays. IEEE J. Emerging and Selected Topics in Circuits and Systems 12, 888–897 (2022).

    Article 

    Google Scholar 

  • Wu, Y., Deng, L., Li, G., Zhu, J. & Shi, L. Spatio-temporal backpropagation for training high-performance spiking neural networks. Front. Neurosci. 12, 331 (2018).

    Article 

    Google Scholar 

  • Haarnoja, T., Zhou, A., Abbeel, P. & Levine, S. Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. in International Conference on Machine Learning 1861–1870 (PMLR, 2018).

  • Tishby, N., Pereira, F. C. & Bialek, W. The information bottleneck method. Preprint at (2000).

  • Johnson, M. H. Functional brain development in humans. Nat. Rev. Neurosci. 2, 475–483 (2001).

    Article 

    Google Scholar 

  • Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Revi. Neurosci. 10, 724–735 (2009).

    Article 

    Google Scholar 

  • Kandel, E. R. et al. Principles of Neural Science Vol. 4 (McGraw-Hill, 2000).

  • Stelzer, F., Röhm, A., Vicente, R., Fischer, I. & Yanchuk, S. Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops. Nat. Commun. 12, 5164 (2021).

    Article 

    Google Scholar 

  • Adeli, H. & Park, H. S. Optimization of space structures by neural dynamics. Neural Netw. 8, 769–781 (1995).

    Article 

    Google Scholar 

  • Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F. & Ostojic, S. The role of population structure in computations through neural dynamics. Nat. Neurosci. 25, 783–794 (2022).

    Article 

    Google Scholar 

  • Tian, Y. et al. Theoretical foundations of studying criticality in the brain. Netw. Neurosci. 6, 1148–1185 (2022).

  • Gidon, A. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 367, 83–87 (2020).

    Article 

    Google Scholar 

  • Koch, C., Bernander, Ö. & Douglas, R. J. Do neurons have a voltage or a current threshold for action potential initiation? J. Comput. Neurosci. 2, 63–82 (1995).

    Article 

    Google Scholar 

  • Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. Deep learning in spiking neural networks. Neural Netw. 111, 47–63 (2019).

    Article 

    Google Scholar 

  • Lin, X., Zhen, H.-L., Li, Z., Zhang, Q.-F. & Kwong, S. Pareto multi-task learning. In 33rd Conference on Neural Information Processing Systems (NeurIPS, 2019).

  • Molchanov, P., Tyree, S., Karras, T., Aila, T. & Kautz, J. Pruning convolutional neural networks for resource efficient inference. in International Conference on Learning Representations (2022).

  • Alemi, A. A., Fischer, I., Dillon, J. V. & Murphy, K. Deep variational information bottleneck. in International Conference on Learning Representations (2022).

  • Linxuan, H. Network model with internal complexity bridges artificial intelligence and neuroscience. Zenodo (2024).

  • link

    By admin